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Abstract. Let C be a two and three-weight ternary code. Further-
more, we assume that Cℓ are t-designs for all ℓ by the Assmus–Mattson
theorem. We show that t ≤ 5. As a corollary, we provide a new charac-
terization of the (extended) ternary Golay code.
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1. Introduction10

In the present section, we explain our main results. Throughout this
paper, C denotes a ternary [n, k, d] code and we always assume that a com-
binatorial t-design allows the existence of repeated blocks. Let C⊥ be a
ternary [n, n−k, d⊥] dual code of C. We set Cu := {c ∈ C | wt(c) = u}. We
always assume that there exists t ∈ N that satisfies the following condition:

d⊥ − t = ♯{u | Cu 6= ∅, 0 < u ≤ n− t}.(1.1)

This is a condition of the Assmus–Mattson theorem (see Theorem 2.1),11

which we call the AM-condition. Let Du and D⊥
w be the support designs of12

C and C⊥ for weights u and w, respectively. Then, by (1.1) and Theorem13

2.1, Du and D⊥
w are t-designs (also s-designs for 0 < s < t) for any u and14

w, respectively.15

Let C satisfy the AM-condition. The main results of the present paper16

are the following theorems. For a two or three-weight code, we impose17

restrictions on d⊥ and t.18

Theorem 1.1. Let C be a two-weight ternary code. If C satisfies the AM-19

condition, then one of the following holds:20

(1) d⊥ = 5 and C is the dual of the ternary Golay code [11, 5, 6] with21

t = 4 or22

(2) d⊥ ≤ 4 and t ≤ 3.23

Theorem 1.2. Let C be a three-weight ternary code. If C satisfies the24

AM-condition, then d⊥ ≤ 6 and t ≤ 5.25

*Corresponding author.
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Theorem 1.3. Let C be a three-weight ternary code, which has a weight n1

vector. If C satisfies the AM-condition, one of the following holds:2

(1) d⊥ = 6 and C is the extended ternary Golay code [12, 6, 6] with t = 53

or4

(2) d⊥ ≤ 5 and t ≤ 4.5

It is interesting to note that Theorems 1.1 (1) and 1.3 (1) provide a new6

characterization of the (extended) ternary Golay code.7

Let us explain the next result of the present paper. We introduce the
following notations. Let Dw be the support design of a code C for weight w
and

δ(C) := max{t ∈ N | ∀w,Dw is a t-design},
s(C) := max{t ∈ N | ∃w s.t. Dw is a t-design}.

We note that δ(C) ≤ s(C). In our previous papers [7, 12, 19, 20, 21, 22,8

23, 24], we considered the possible occurrence of δ(C) < s(C). This was9

motivated by Lehmer’s conjecture, which is an analogue of δ(C) < s(C)10

in the theory of lattices and vertex operator algebras. For the details, see11

[5, 6, 8, 14, 16, 17, 19, 26, 27].12

In [23], for an extremal Type III or IV code C ′, we prove the case δ(C ′) <13

s(C ′) does not occur. In [24], for a near-extremal Type I code C ′′ of length14

n ≡ 0 (mod 8), we prove the case of δ(C ′′) < s(C ′′) occurs if and only if C ′′
15

is the unique near-extremal Type I [16, 8, 4] code.16

Therefore, in the present paper, we considered the possible occurrence of17

δ(C) < s(C). For cases in which d⊥ − t = 1, 2 or 3, the following theorem18

provides a criterion for n and d such that δ(C⊥) < s(C⊥) occurs. Let d = d1,19

and d2 and d3 be the second and third weights of C, respectively.20

Theorem 1.4. Let αℓ = n− dℓ − (t+ 1) and βℓ = dℓ − (t+ 1) for ℓ = 1, 221

or 3.22

(1) Let C satisfy the AM-condition with d⊥ − t = 1. Let w ∈ N such
that ∑

i+j=w

2i
(
α1

i

)
· (−1)j

(
β1
j

)
= 0.

Then D⊥
w+t+1 is a (t+ 1)-design if C⊥

w+t+1 is non-empty.23

(2) Let C satisfy the AM-condition with d⊥ − t = 2. Let w ∈ N such
that∑
i+j=w

(
2i
(
α1

i

)
· (−1)j

(
β1
j

)
− 2i

(
α2

i

)
· (−1)j

(
β2
j

))
= 0.

Then D⊥
w+t+1 is a (t+ 1)-design if C⊥

w+t+1 is non-empty.24
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(3) Let C satisfy the AM-condition with d⊥ − t = 3. Let w ∈ N such
that∑

i+j=w

(
2i
(
α1

i

)
· (−1)j

(
β1
j

)
− d3 − d1

d3 − d2
2i
(
α2

i

)
· (−1)j

(
β2
j

)

+
d2 − d1
d3 − d2

2i
(
α3

i

)
· (−1)j

(
β3
j

))
= 0.

Then D⊥
w+t+1 is a (t+ 1)-design if C⊥

w+t+1 is non-empty.1

This theorem strengthens the Assmus–Mattson theorem for particular2

cases. We note that parameters n, di, and w that satisfy the condition3

in Theorem 1.4 are listed on the homepage of one of the authors [18]. In4

particular, we present the following corollary:5

Corollary 1.5. Let C satisfy the AM-condition in Theorem 1.4. For n ≤6

10, in Miezaki’s homepage [18], we provide the parameters n, di, and w such7

that δ(C) < s(C) occurs.8

This paper is organized as follows: In Section 2, we provide background9

material and terminology. We review the concept of harmonic weight enu-10

merators and theorems of designs, which we use to prove the main results.11

In Sections 3, 4, 5, and 6, we give proofs of Theorems 1.1, 1.2, 1.3, and 1.4,12

respectively. Finally, in Section 7, we conclude the paper with remarks.13

We performed all the computer calculations in this paper with the help14

of Magma [9] and Mathematica [28].15

2. Preliminaries16

2.1. Background material and terminology. Let Fq be the finite field17

of q elements. A linear code C over Fq of length n is a subspace of Fn
q . A18

ternary linear code C of length n is a subspace of Fn
3 . In the present paper,19

we always assume that C is a ternary code.20

An inner product (x, y) on Fn
3 is given by21

(x, y) =
n∑

i=1

xiyi,

where x, y ∈ Fn
3 with x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The22

duality of a linear code C is defined as follows:23

C⊥ = {y ∈ Fn
3 | (x, y) = 0 for all x ∈ C}.

A linear code C is self-dual if C = C⊥. For x ∈ Fn
3 , the weight wt(x) is24

the number of its nonzero components. The minimum distance of code C25

is min{wt(x) | x ∈ C, x 6= 0}. A linear code of length n, dimension k, and26

minimum distance d is called an [n, k, d] code (or [n, k] code) and the dual27

code is called an [n, n− k, d⊥] code.28

A t-(v, k, λ) design (or t-design, for short) is a pair D = (X,B), where X29

is a set of points of cardinality v, and B is a collection of k-element subsets30
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of X called blocks, with the property that any t points are contained in1

precisely λ blocks.2

The support of a nonzero vector x := (x1, . . . , xn), xi ∈ F3 = {0, 1, 2} is3

the set of indices of its nonzero coordinates: supp(x) = {i | xi 6= 0}. The4

support design of a code of length n for a given nonzero weight w is the5

design with points n of coordinate indices and blocks the supports of all6

codewords of weight w.7

The following theorem is from Assmus and Mattson [1]. It is one of the8

most important theorems in coding theory and design theory:9

Theorem 2.1 ([1]). Let C be a linear code of length n over Fq with minimum10

weight d. Let C⊥ denote the dual code of C, with minimum weight d⊥.11

Suppose that an integer t (1 ≤ t ≤ n) is such that there are at most d − t12

weights of C⊥ in {1, 2, . . . , n − t}, or such that there are at most d⊥ − t13

weights of C in {1, 2, . . . , n− t}. Then the supports of the words of any fixed14

weight in C form a t-design (with possibly repeated blocks).15

2.2. Harmonic weight enumerators. In this subsection, we review the16

concept of harmonic weight enumerators.17

Let C be a code of length n. The weight distribution of code C is the
sequence {Ai | i = 0, 1, . . . , n}, where Ai is the number of codewords of
weight i. The polynomial

WC(x, y) =

n∑
i=0

Aix
n−iyi

is called the weight enumerator of C. The weight enumerator of code C and18

its dual C⊥ are related. The following theorem, proposed by MacWilliams,19

is called the MacWilliams identity:20

Theorem 2.2 ([13]). Let WC(x, y) be the weight enumerator of an [n, k]
code C over Fq and let WC⊥(x, y) be the weight enumerator of the dual code

C⊥. Then

WC⊥(x, y) = q−kWC(x+ (q − 1)y, x− y).

A striking generalization of the MacWilliams identity was provided by21

Bachoc [2], who proposed the concept of harmonic weight enumerators.22

Harmonic weight enumerators have many applications; in particular, the23

relations between coding theory and design theory are reinterpreted and24

progressed by harmonic weight enumerators [2, 4]. For the reader’s conve-25

nience, we quote the definitions and properties of discrete harmonic functions26

from [2, 10].27

Let Ω = {1, 2, . . . , n} be a finite set (which is the set of coordinates of the
code) and let X be the set of its subsets, where for all k = 0, 1, . . . , n, Xk is
the set of its k-subsets. Let RX and RXk denote the free real vector spaces
spanned by the elements of X and Xk, respectively. An element of RXk is
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denoted by

f =
∑
z∈Xk

f(z)z

and identified with the real-valued function on Xk given by z 7→ f(z).1

Such an element f ∈ RXk can be extended to an element f̃ ∈ RX by
setting, for all u ∈ X,

f̃(u) =
∑

z∈Xk,z⊂u

f(z).

If an element g ∈ RX is equal to some f̃ , for f ∈ RXk, we say that g has
degree k. The differentiation γ is the operator defined by linearity from

γ(z) =
∑

y∈Xk−1,y⊂z

y

for all z ∈ Xk and for all k = 0, 1, . . . n, and Harmk is the kernel of γ:

Harmk = ker(γ|RXk
).

Theorem 2.3 ([10, Theorem 7]). A set of blocks B ⊂ Xm, where m ≤ n, is2

a t-design if and only if
∑

b∈B f̃(b) = 0 for all f ∈ Harmk, 1 ≤ k ≤ t.3

In [2], the harmonic weight enumerator associated with a binary linear4

code C was defined as follows:5

Definition 2.4. Let C be a binary code of length n and let f ∈ Harmk.6

The harmonic weight enumerator associated with C and f is7

WC,f (x, y) =
∑
c∈C

f̃(c)xn−wt(c)ywt(c).

Bachoc and Tanabe proved the following MacWilliams-type equality:8

Theorem 2.5 ([3, 25]). Let WC,f (x, y) be the harmonic weight enumerator
associated with the code C and the harmonic function f of degree k. Then

WC,f (x, y) = (xy)kZC,f (x, y),

where ZC,f is a homogeneous polynomial of degree n− 2k, and satisfies

ZC⊥,f (x, y) = (−1)k
qn/2

|C|
ZC,f

(
x+ (q − 1)y

√
q

,
x− y
√
q

)
.

3. Proof of Theorem 1.19

Let C be a ternary code of length n. In this section, we always assume10

that C is a two-weight code and the weight distribution of C is “0, d1, d2”.11

Before providing the proof, we present the following lemma:12

Lemma 3.1. Let n, k ∈ Z≥1. The solutions of the equation

1 + 2n2 = 3k

are as follows:13

(n, k) = (1, 1), (2, 2), (11, 5).
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Proof. We assume that k ≡ 0 (mod 3) and x = 3k/3. Moreover, multiplying1

23, we have2

(22n)2 = (2 · x)3 − 23.

Let Y = 22n and X = 2x. Then3

Y 2 = X3 − 23.

By Magma,4

E := EllipticCurve([ 0, -2^3 ]);5

IntegralPoints(E);6

we do not obtain any integer solutions (n, k).7

Similarly, for the other cases k ≡ 1, 2 (mod 3), we obtain the integer8

solutions (1, 1), (2, 2), (11, 5). □9

3.1. Proof of Theorem 1.1. In this subsection, we provide the proof of10

Theorem 1.1. Let11

WC(x, y) = xn + αxn−d1yd1 + βxn−d2yd2

be the weight enumerator of C.12

By Theorem 2.2,

WC⊥(x, y) =3−kWC(x+ 2y, x− y)

=3−k
∑
i≥0

Aix
n−iyi.

If d⊥ ≥ 5, then Ai = 0 for i ∈ {1, . . . , 4}; hence, we have the following
constraints:

A1 = 0,(3.1)

A2 = 0,(3.2)

A3 = 0,(3.3)

A4 = 0.(3.4)

We note that the explicit values of Ai (1 ≤ i ≤ 4) are listed in Section A.13

Therefore, if d⊥ ≥ 5, then we have the constraints in Eqs. (3.1)–(3.4).14

Using Eqs. (3.1)–(3.4), we present the following theorem:15

Theorem 3.2. If d⊥ ≥ 5 then C is the dual of the ternary Golay code16

[11, 5, 6].17

Proof. We assume that C has d⊥ ≥ 5. Using Eqs. (3.1) and (3.2), we write
α and β in terms of n, d1, and d2, that is,

α = α1 = Y11(n, d1, d2),

β = β1 = Y12(n, d1, d2).
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Similarly, using Eqs.(3.1) and (3.3), we write α and β in terms of n, d1, and
d2, that is,

α = α2 = Y21(n, d1, d2),

β = β2 = Y22(n, d1, d2),

and using Eqs.(3.1) and (3.4), we write α and β in terms of n, d1, and d2,
that is,

α = α3 = Y31(n, d1, d2),

β = β3 = Y32(n, d1, d2).

We note that the explicit values of Yij (1 ≤ i ≤ 3, 1 ≤ j ≤ 2) are listed in1

Section B.2

Using Mathematica, we obtain the solutions of3

α1 = α2, α1 = α3, β1 = β2, β1 = β3.

We note that these solutions are listed in Section C. The solutions (1)–(3),4

(6), and (7) are impossible. We show that if (4) and (5) occur then C is a5

code with (n, k) = (11, 5).6

Then using (4), Eqs. (3.1)–(3.4), and Mathematica, we obtain7

1 + 2n2 = 3k = |C|.

By Lemma 3.1,8

(n, k) = (1, 1), (2, 2), (11, 5),

and it is clear that the first two cases are impossible and the last case occurs,9

which is the dual of the extended Golay code [11, 5, 6]. □10

4. Proof of Theorem 1.211

Let C be a ternary code of length n. In this section, we always assume that12

C is a three-weight code and the weight distribution of C is “0, d1, d2, d3”.13

Before providing the proof, we present the following lemma:14

Lemma 4.1. Let n, k ∈ Z≥1. The solutions of the equation

1 +
8

3
n− 2n2 +

4

3
n3 = 3k

are as follows:15

(n, k) = (1, 1), (2, 2), (3, 3).

Proof. We assume that k ≡ 0 (mod 2) and y = 3k/2. Then multiplying 3 ·42

(3 · 4n)3 − 6 · 3(3 · 4n)2 + 8 · 4 · 32(3 · 4n) + 34 · 42 = (32 · 4y)2.

Let Y = 32 · 4y and X = 3 · 4n. Then

X3 − 6 · 3X2 + 8 · 4 · 32X + 34 · 42 = Y 2.

By Magma,16
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E := EllipticCurve ([0, -6*3, 0, 8*4*3^2, 3*4^2*3^3]);1

IntegralPoints(E);2

and we obtain the integer solutions (n, k):3

(2, 2).4

The other cases k ≡ 1 (mod 2) can be proved similarly. □5

4.1. Proof of Theorem 1.2. In this subsection, we provide the proof of6

Theorem 1.2. Let7

WC(x, y) = xn + αxn−d1yd1 + βxn−d2yd2 + γxn−d3yd3

be the weight enumerator of C.8

By Theorem 2.2,

WC⊥(x, y) =3−kWC(x+ 2y, x− y)

=3−k
∑
i≥0

Aix
n−iyi.

If d⊥ ≥ 7, then Ai = 0 for i ∈ {1, . . . , 5}; hence, we have the following
constraints:

A1 = 0,(4.1)

A2 = 0,(4.2)

A3 = 0,(4.3)

A4 = 0,(4.4)

A5 = 0,(4.5)

A6 = 0.(4.6)

Using Eqs. (4.1)–(4.6), we present the following theorem:9

Theorem 4.2. There is no code C with d⊥ ≥ 7.10

Proof. We assume that C has d⊥ ≥ 7. Using Eqs. (4.1), (4.2), and (4.3),
we write α, β, and γ in terms of n, d1, and d2, that is,

α = α1 = Y11(n, d1, d2),

β = β1 = Y12(n, d1, d2),

γ = γ1 = Y13(n, d1, d2).

Similarly, using Eqs.(4.1), (4.2), and (4.4), we write α, β, and γ in terms of
n, d1, and d2, that is,

α = α2 = Y21(n, d1, d2),

β = β2 = Y22(n, d1, d2),

γ = γ2 = Y23(n, d1, d2),
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using Eqs. (4.1), (4.2), and (4.5), we write α, β, and γ in terms of n, d1,
and d2, that is,

α = α3 = Y31(n, d1, d2),

β = β3 = Y32(n, d1, d2),

γ = γ3 = Y33(n, d1, d2),

and using Eqs. (4.1), (4.2), and (4.6), we write α, β, and γ in terms of n,
d1, and d2, that is,

α = α4 = Y41(n, d1, d2),

β = β4 = Y42(n, d1, d2),

γ = γ4 = Y43(n, d1, d2).

Using Mathematica, we obtain the solutions of

α1 = α2, α1 = α3, α1 = α4,

β1 = β2, β1 = β3, β1 = β4,

γ1 = γ2, γ1 = γ3, γ1 = γ4.

We note that these solutions are listed on the homepage of one of the authors1

[18]. The solutions (1)–(7) and (14)—(20) are impossible.2

We assume that (8) occurs. The other cases can be proved similarly. Then3

using (8), Eqs. (4.1)–(4.6), and Mathematica, we obtain4

1 +
8

3
n− 2n2 +

4

3
n3 = 3k = |C|.

By Lemma 4.1,5

(n, k) = (1, 1), (2, 2), (3, 3).

It is trivial that there is no code C with (n, k) = (1, 1), (2, 2), (3, 3). □6

5. Proof of Theorem 1.37

Let C be a ternary code of length n. In this section, we always assume that8

C is a three-weight code and the weight distribution of C is “0, d1, d2, n”.9

Before providing the proof, we present the following lemma:10

Lemma 5.1. Let n, k ∈ Z≥1. The solutions of the equation

9− 12n+ 6n2 = 3k

are as follows:11

(n, k) = (1, 1), (2, 2), (3, 3), (12, 6).

Proof. We assume that k ≡ 0 (mod 3) and x = 3k/3. Let n = N − 1. Then12

6N2 = x3 − 3. Moreover, multiplying 63, we have13

64N2 = 63x3 − 3 · 63 ⇔ (62N)2 = (6x)3 − 3 · 63.
Let Y = 62N and X = 6x. Then14

Y 2 = X3 − 3 · 63.
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By Magma,1

E := EllipticCurve([ 0, -3*6^3 ]);2

IntegralPoints(E);3

we obtain the integer solutions (n, k):4

(3, 3), (12, 6).5

The other cases k ≡ 1, 2 (mod 3) can be proved similarly. □6

5.1. Proof of Theorem 1.3. In this subsection, we provide the proof of7

Theorem 1.3. Let8

WC(x, y) = xn + αxn−d1yd1 + βxn−d2yd2 + γyn

be the weight enumerator of C.9

By Theorem 2.2,

WC⊥(x, y) =3−kWC(x+ 2y, x− y)

=3−k
∑
i≥0

Aix
n−iyi.

If d⊥ ≥ 6, then Ai = 0 for i ∈ {1, . . . , 5}; hence, we have the following
constraints:

A1 = 0,(5.1)

A2 = 0,(5.2)

A3 = 0,(5.3)

A4 = 0,(5.4)

A5 = 0.(5.5)

Therefore, if d⊥ ≥ 6, then we have the constraints in Eqs. (5.1)–(5.5).10

Using Eqs. (5.1)–(5.5), we present the following theorem:11

Theorem 5.2. If d⊥ ≥ 6, then C is the extended ternary Golay code12

[12, 6, 6].13

Proof. We assume that C has d⊥ ≥ 6. Using Eqs. (5.1), (5.2), and (5.3),
we write α, β, and γ in terms of n, d1, and d2, that is,

α = α1 = Y11(n, d1, d2),

β = β1 = Y12(n, d1, d2),

γ = γ1 = Y13(n, d1, d2).

Similarly, using Eqs.(5.1), (5.2), and (5.4), we write α, β, and γ in terms of
n, d1, and d2, that is,

α = α2 = Y21(n, d1, d2),

β = β2 = Y22(n, d1, d2),

γ = γ2 = Y23(n, d1, d2),
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and using Eqs. (5.1), (5.2), and (5.5), we write α, β, and γ in terms of n,
d1, and d2, that is,

α = α3 = Y31(n, d1, d2),

β = β3 = Y32(n, d1, d2),

γ = γ3 = Y33(n, d1, d2).

Using Mathematica, we obtain the solutions of1

α1 = α2, α1 = α3, β1 = β2, β1 = β3, γ1 = γ2, γ1 = γ3.

We note that these solutions are listed on the homepage of one of the authors2

[18]. The solutions (1)–(3), (6), and (7) are impossible. We show that if (4)3

and (5) occur then C is a code with (n, k) = (12, 6).4

Then using the (4), Eqs. (5.1)–(5.5), and Mathematica, we obtain5

9− 12n+ 6n2 = 3k = |C|.

By lemma 5.1,6

(n, k) = (1, 1), (2, 2), (3, 3), (12, 6),

and it is clear that the first three cases are impossible and the last case is7

the extended ternary Golay code [12, 6, 6]. □8

6. Proof of Theorem 1.49

6.1. Proof of Theorem 1.4 (1). In this subsection, we provide the proof10

of Theorem 1.4 (1).11

Proof. The harmonic weight enumerator of f ∈ Harmt+1 is

WC,f =axn−d1yd1

=(xy)t+1axn−d1−(t+1)yd1−(t+1),

where a ∈ R. We set

ZC,f = axn−d1−(t+1)yd1−(t+1).

Then, by Theorem 2.5,

ZC⊥,f =a′(x+ 2y)n−d1−(t+1)(x− y)d1−(t+1).(6.1)

Let12

WC⊥,f = (xy)t+1ZC⊥,f =
∑

pix
n−iyi.

By (6.1),13

pw+t+1 =(constant)

×
∑

i+j=w

2i
(
n− d1 − (t+ 1)

i

)
· (−1)j

(
d1 − (t+ 1)

j

)
.
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By Theorem 2.3, if∑
i+j=w

2i
(
n− d1 − (t+ 1)

i

)
· (−1)j

(
d1 − (t+ 1)

j

)
= 0,

then D⊥
w+t+1 is a (t+ 1)-design.1

□2

6.2. Proof of Theorem 1.4 (2). In this subsection, we provide the proof3

of Theorem 1.4 (2).4

Proof. The harmonic weight enumerator of f ∈ Harmt+1 is

WC,f =axn−d1yd1 + bxn−d2yd2

=(xy)t+1(axn−d1−(t+1)yd1−(t+1) + bxn−d2−(t+1)yd2−(t+1)),

where a, b ∈ R. We set

ZC,f = axn−d1−(t+1)yd1−(t+1) + bxn−d2−(t+1)yd2−(t+1).

Then, by Theorem 2.5,

ZC⊥,f =a′(x+ 2y)n−d1−(t+1)(x− y)d1−(t+1)

+ b′(x+ 2y)n−d2−(t+1)(x− y)d2−(t+1).

Since d⊥ 6= t+ 1, the coefficients of xn−2(t+1) are zero. Then, a′ + b′ = 0.5

Then,

ZC⊥,f =a′
(
(x+ 2y)n−d1−(t+1)(x− y)d1−(t+1)(6.2)

− (x+ 2y)n−d2−(t+1)(x− y)d2−(t+1)
)
.

Let6

WC⊥,f = (xy)t+1ZC⊥,f =
∑

pix
n−iyi.

By (6.2),

pw+t+1 =(constant)

×
∑

i+j=w

(
2i
(
n− d1 − (t+ 1)

i

)
· (−1)j

(
d1 − (t+ 1)

j

)

− 2i
(
n− d2 − (t+ 1)

i

)
· (−1)j

(
d2 − (t+ 1)

j

))
.

By Theorem 2.3, if∑
i+j=w

(
2i
(
n− d1 − (t+ 1)

i

)
· (−1)j

(
d1 − (t+ 1)

j

)

− 2i
(
n− d2 − (t+ 1)

i

)
· (−1)j

(
d2 − (t+ 1)

j

))
= 0.

Then D⊥
w+t+1 is a (t+ 1)-design.7
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□1

6.3. Proof of Theorem 1.4 (3). In this subsection, we provide the proof2

of Theorem 1.4 (3).3

Proof. The harmonic weight enumerator of f ∈ Harmt+1 is

WC,f =axn−d1yd1 + bxn−d2yd2 + cxn−d3yd3

=(xy)t+1(axα1yβ1 + bxα2yβ2 + cxα3yβ3),

where a, b, c ∈ R, αℓ = n− dℓ− (t+1) and βℓ = dℓ− (t+1) for ℓ = 1, 2 or 3.4

We set

ZC,f = axα1yβ1 + bxα2yβ2 + cxα3yβ3 .

Then, by Theorem 2.5,

ZC⊥,f =a′(x+ 2y)α1(x− y)β1

+ b′(x+ 2y)α2(x− y)β2

+ c′(x+ 2y)α3(x− y)β3 .

Since d⊥ 6= t+ 1, t+ 2, the coefficients of xn−2(t+1) and xn−2(t+1)−1y are
zero. Then,

a′ + b′ + c′ = 0,(6.3)

a′(2α1 − β1) + b′(2α2 − β2) + c′(2α3 − β3) = 0.(6.4)

By (6.3) and (6.4),

b′ = −d3 − d1
d3 − d2

a′,

c′ =
d2 − d1
d3 − d2

a′.

Then,

ZC⊥,f =a′
(
(x+ 2y)α1(x− y)β1(6.5)

− d3 − d1
d3 − d2

(x+ 2y)α2(x− y)β2

+
d2 − d1
d3 − d2

(x+ 2y)α3(x− y)β3
)
.

Let5

WC⊥,f = (xy)t+1ZC⊥,f =
∑

pix
n−iyi.
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By (6.5),

pw+t+1 =(constant)

×
∑

i+j=w

(
2i
(
α1

i

)
· (−1)j

(
β1
j

)
− d3 − d1

d3 − d2
2i
(
α2

i

)
· (−1)j

(
β2
j

)

+
d2 − d1
d3 − d2

2i
(
α3

i

)
· (−1)j

(
β3
j

))
.

By Theorem 2.3, if∑
i+j=w

(
2i
(
α1

i

)
· (−1)j

(
β1
j

)
− d3 − d1

d3 − d2
2i
(
α2

i

)
· (−1)j

(
β2
j

)

+
d2 − d1
d3 − d2

2i
(
α3

i

)
· (−1)j

(
β3
j

))
= 0.

Then D⊥
w+t+1 is a (t+ 1)-design.1

□2

7. Concluding Remarks3

Remark 7.1. (1) Are there examples that satisfy the condition of The-4

orem 1.4?5

(2) For a two-weight code, if we assume that d⊥ ≥ 5 and

WC(x, y) = xn + αxn−d1yd1 + βxn−d2yd2 ,

then6

1 + α+ β =
2∑

i=0

(
n

i

)
2i.

Similarly, for a three-weight code, if we assume that d⊥ ≥ 7 and

WC(x, y) = xn + αxn−d1yd1 + βxn−d2yd2 + γxn−d3yd3 ,

then7

1 + α+ β + γ =
3∑

i=0

(
n

i

)
2i.

In the case d3 = n, if we assume that d⊥ ≥ 6, then8

1 + α+ β + γ = 3
2∑

i=0

(
n− 1

i

)
2i.

In [15], van Lint found the solutions of the following equation for9

e = 2, 3:10
e∑

i=0

(
n

i

)
2i = 3k.

Our method provides an alternative proof.11

This suggests the following conjecture:12
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Conjecture 7.2. Let C be an ℓ-weight [n.k.d] code over Fq and1

satisfy the AM-condition. If we assume that d⊥ ≥ 2ℓ+ 1 and2

WC(x, y) = xn +
∑

1≤i≤ℓ

αix
n−diydi ,

then3

1 + α1 + α2 + · · ·+ αℓ =
ℓ∑

i=0

(
n

i

)
(q − 1)i = qk.

Moreover, if ℓ ≥ 4, the codes corresponding the solutions of4

ℓ∑
i=0

(
n

i

)
(q − 1)i = qk

do not exist. Hence, d⊥ ≤ 2ℓ and t ≤ 2ℓ− 1 for ℓ ≥ 4.5

To date, we do not have a proof of this conjecture.6
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Appendix A. Values of Ai12

A1 = −3αd1 − 3βd2 + 2n+ 2αn+ 2βn13

A2 = 2(−1 + n)n + 1/2α(3d1 + 9d21 − 4n − 12d1n + 4n2) + 1/2β(3d2 +14

9d22 − 4n− 12d2n+ 4n2)15

A3 = 4/3(−2 + n)(−1 + n)n− 1/6α(18d1 + 27d21 + 27d31 − 16n− 54d1n−16

54d21n+ 24n2 + 36d1n
2 − 8n3)− 1/6β(18d2 + 27d22 + 27d32 − 16n− 54d2n−17

54d22n+ 24n2 + 36d2n
2 − 8n3)18

A4 = 2/3(−3 + n)(−2 + n)(−1 + n)n+ α(1/24(−3 + d1)(−2 + d1)(−1 +19

d1)d1−1/3(−2+d1)(−1+d1)d1(−d1+n)+(−1+d1)d1(−1−d1+n)(−d1+20

n)−4/3d1(−2−d1+n)(−1−d1+n)(−d1+n)+2/3(−3−d1+n)(−2−d1+21

n)(−1−d1+n)(−d1+n))+β(1/24(−3+d2)(−2+d2)(−1+d2)d2−1/3(−2+22

d2)(−1+d2)d2(−d2+n)+(−1+d2)d2(−1−d2+n)(−d2+n)−4/3d2(−2−d2+23

n)(−1−d2+n)(−d2+n)+2/3(−3−d2+n)(−2−d2+n)(−1−d2+n)(−d2+n))24

Appendix B. Values of Yij25

Y11 = −((2(−d2n+3d22n−2d2n
2))/(9d21d2−9d1d

2
2+2d1n−6d21n−2d2n+26

6d22n+ 4d1n
2 − 4d2n

2))27

Y12 = (2(d1n−3d21n+2d1n
2))/((−d1+d2)(9d1d2+2n−6d1n−6d2n+4n2))28

Y21 = −((2(−2d2n + 9d22n + 9d32n − 6d2n
2 − 18d22n

2 + 8d2n
3))/((d1 −29

d2)(27d1d2 + 27d21d2 + 27d1d
2
2 + 4n − 18d1n − 18d21n − 18d2n − 72d1d2n −30

18d22n+ 12n2 + 36d1n
2 + 36d2n

2 − 16n3)))31
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Y22 = −((2(−2d1n + 9d21n + 9d31n − 6d1n
2 − 18d21n

2 + 8d1n
3))/((−d1 +1

d2)(27d1d2 + 27d21d2 + 27d1d
2
2 + 4n − 18d1n − 18d21n − 18d2n − 72d1d2n −2

18d22n+ 12n2 + 36d1n
2 + 36d2n

2 − 16n3)))3

Y31 = −((2(6d2n− 27d22n− 18d32n− 9d42n+ 16d2n
2 + 48d22n

2 + 24d32n
2 −4

24d2n
3−24d22n

3+8d2n
4))/((−d1+d2)(81d1d2+54d21d2+27d31d2+54d1d

2
2+5

27d21d
2
2+27d1d

3
2+12n−54d1n−36d21n−18d31n−54d2n−180d1d2n−90d21d2n−6

36d22n− 90d1d
2
2n− 18d32n+32n2 +96d1n

2 +48d21n
2 +96d2n

2 +120d1d2n
2 +7

48d22n
2 − 48n3 − 48d1n

3 − 48d2n
3 + 16n4)))8

Y32 = (2(6d1n − 27d21n − 18d31n − 9d41n + 16d1n
2 + 48d21n

2 + 24d31n
2 −9

24d1n
3−24d21n

3+8d1n
4))/((−d1+d2)(81d1d2+54d21d2+27d31d2+54d1d

2
2+10

27d21d
2
2+27d1d

3
2+12n−54d1n−36d21n−18d31n−54d2n−180d1d2n−90d21d2n−11

36d22n− 90d1d
2
2n− 18d32n+32n2 +96d1n

2 +48d21n
2 +96d2n

2 +120d1d2n
2 +12

48d22n
2 − 48n3 − 48d1n

3 − 48d2n
3 + 16n4))13

Appendix C. Solutions (1)–(7) in Proof of Theorem 3.214

(1)d1 = 015

(2)d2 = 016

(3)n = 017

(4)d1 =
1
6

(
4n−

√
8n− 7 + 1

)
, d2 =

−8n2+12n+3
√
8n−7−1

3(−4n+
√
8n−7+5)

18

(5)d1 =
1
6

(
4n+

√
8n− 7 + 1

)
, d2 =

8n2−12n+3
√
8n−7+1

3(4n+
√
8n−7−5)

19

(6)d1 = 1, n = 120

(7)d2 = 1, n = 121
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